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Abstract

Dislocation nucleation is central to our understanding of the onset of plasticity during nanoindentation. The shear stress in small
volumes beneath the nanoindenter can achieve the theoretical limit of a perfect crystal. The ensuing nonlinear elastic instability can trig-
ger homogenous dislocation nucleation inside the crystal. Here we employ the interatomic potential finite element method to simulate
nanoindentation and predict dislocation nucleation. Simulations are performed for indentation on the (111), (110) and (100) surfaces
of Al, Cu, Ni single crystals. We quantify the critical conditions of dislocation nucleation, including the indentation load of nucleation,
location of nucleation site, nucleation stress and activated slip system. We find these conditions sensitively depend on indentation ori-
entation, but are consistent for different crystals. The results highlight the critical role of hyperelasticity (the nonlinear elasticity caused
by elastic softening at large strain) and crystallography in dislocation nucleation in small material volumes. Our study also reveals the
deficiency of commonly used nucleation criterion such as the critical resolved shear stress.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Interatomic potential finite element method; Nanoindentation; Dislocation nucleation
1. Introduction

In nanoindentation experiments, the shear stress at the
onset of plasticity can approach the theoretical shear
strength of a perfect crystal [1–6]. Such ultra-high stress
occurs in small (nanometer-sized) volumes beneath the
nanoindenter, which can be free of any pre-existing defects.
A defect-free crystal deforms in a nonlinear manner, when
the shear stress approaches the theoretical limit. The non-
linear elastic, or the so-called hyperelastic, response arises
from the elastic softening of crystal lattice at large strain.
This paper is concerned with the critical role of hyperelas-
ticity, as well as crystallography, in the onset of plasticity
during nanoindentation, a process arguably associated
with homogenous dislocation nucleation that result from
the nonlinear elastic instability of crystal at large shear.
0045-7825/$ - see front matter � 2007 Elsevier B.V. All rights reserved.
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Here we employ the interatomic potential finite element
method (IPFEM) [7–9] to simulate nanoindentation and
predict homogenous dislocation nucleation. The IPFEM
simulation takes as an input the interatomic potential-
based constitutive relation derived within the framework
of hyperelasticity of single crystals [10]. It can accurately
capture the essential physical effects of crystal at large
deformation: nonlinear elasticity and shear asymmetry
(i.e., the asymmetry of shear stress with respect to the
sense of shearing in the Shockley partial direction of
f111gh11�2i), thereby enabling an accurate prediction of
dislocation nucleation. Compared to the commonly used
molecular dynamics (MD), the IPFEM significantly
improves the computational efficiency, so that the effects
of system size and loading rate can be minimized, and con-
sequently simulations of nanoindentation can be per-
formed on the length and time scales close to laboratory
experiments.

In this study, simulations are performed for nanoinden-
tation on several face-centered cubic (fcc) crystals at low
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temperature (nearly zero-K) when the effect of thermal acti-
vation is negligible. For each crystal, we simulate indenta-
tion on the (111), (110) and (100) surfaces, and quantify
the critical conditions of homogenous dislocation nucle-
ation in the bulk perfect crystal. The results highlight the
central role of hyperelasticity (nonlinear elasticity) and
crystallography in dislocation nucleation in small material
volumes, a process requiring ultra-high stress that is
achievable during nanoindentation. Our study also reveals
the deficiency of commonly used nucleation criterion such
as the critical resolved shear stress. With the rapid develop-
ment in the experimental techniques of nanoindentation
[6], we envision a direct comparison will soon become
possible between the experiments (where a further improve-
ment for quantitative control is needed) and atomistics-
based quantification of critical conditions of dislocation
nucleation as predicted in this paper.
2. Method

2.1. Interatomic potential finite element method

The key to the interatomic potential finite element
method (IPFEM) is the interatomic potential-based consti-
tutive relation derived within the framework of hyperelas-
ticity with the Cauchy–Born rule [10]. The basic premise
of this approach is that every point in a continuum corre-
sponds to a large region of uniformly deformed lattice at
the atomic scale. It follows that the energy of a continuum
point can be calculated by summing the energy of the
underlying lattice deformed according to the continuum
deformation gradient, Fij. Specifically, for a continuum
point, all underlying atoms are identical, one may consider
the energy of one atom at the origin to be representative,
and calculate the energy associated with this atom; the
energy density is the energy per atom divided by the atomic
volume. Within the framework of the embedded-atom
method (EAM) [11], and consider the crystal at nearly
zero-K temperature, the energy density W is given by

W ¼ 1

X0

X
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where V(rK) is the pair potential, �q ¼
P

KqðrKÞ is the ambi-
ent electron density for the atom at the origin, and Uð�qÞ is
the energy required to embed this atom into the electron
density. In Eq. (1), X0 is the atomic volume in a stress free
fcc lattice, namely, X0 ¼ a3

0=4, where a0 is lattice constant;
rK denotes the distance between the atom at the origin and
a neighboring atom when the lattice is deformed, here, the
index K runs over all atoms within a cut-off radius Rc pre-
scribed by the interatomic potential.

The Cauchy (true) stress can be obtained using the stan-
dard relation between energy density and stress,

rij ¼
1

detðF ijÞ
F imF jn

oW
oEmn

: ð2Þ
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Here xK
j denotes the Cartesian coordinate of a neighboring

atom in the deformed lattice, and it can be calculated by
xK

j ¼ F ijxK
0j. Since the Cauchy stress in Eq. (3) involves lat-

tice sum and nonlinear functions of V(rK), Uð�qÞ and q(rK)
[12,13], the effects of crystal anisotropy and nonlinear elas-
ticity are incorporated automatically.

The tangent modulus, cijkl, can also be calculated from
the interatomic potential, as detailed in [9],
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Here, the current and reference configurations are assumed
to coincide. Because of the elastic softening of the hyper-
elastic crystal, the prediction of dislocation nucleation
(see Section 2.3) requires an update of the tangent modulus
cijkl when deformation gradient Fij changes.

The above interatomic potential-based constitutive
model can accurately describe the hyperelastic response
of a bulk crystal, whereas it is inadequate to model the elas-
tic behavior of atomic layers near the crystal surface [14],
where atoms are mis-coordinated compared to the perfect
crystal. However, since we will consider the indenter with
a tip radius of 50 nm (an approximate size in experiments),
the nucleation sites are located at about 10 nm below the
contact surface, so that the effect of mis-coordinated sur-
face atoms are negligible. As such, this constitutive model
is sufficient to study nanoindentation-induced dislocation
nucleation inside the bulk crystal, as verified by molecular
dynamics simulations [9].

The interatomic interactions are modeled using the
EAM potentials [11], which can better describe the many-
body effects of metallic bonding compared to the two-body
pair potential such as Lennard–Jones potential. The EAM
potentials used in this study are developed by Mishin et al.
[12,13], which have been validated by comparing with
experimental results (if available) and/or ab initio cal-
culations. Table 1 compares the elastic constants of the



Table 1
Elastic constants of stress-free single crystals of Cu, Ni and Al

c11 (GPa) c12 (GPa) c44 (GPa) b � 2c44

c11�c12

Cu Experiment 168.4 121.4 75.4 3.2
Potential 169.9 122.6 76.2

Ni Experiment 247 147 125 2.5
Potential 247 148 125

Al Experiment 114 61.9 31.6 1.2
Potential 114 61.6 31.6

Predictions by the EAM potentials are compared with experimental data.
b � 2c44/(c11 � c12) measures the degree of crystal anisotropy.

Fig. 1. Stress–strain curves for simple shear of single crystals of Al, Cu, Ni
in the Shockley partial direction of f111gh11�2i, showing the nonlinear
elasticity and asymmetry of shear stress with respect to the sense of
shearing at large deformation.
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stress-free crystals (Cu/Ni/Al) between experiments and
predictions by the potentials. It also lists the crystal-anisot-
ropy parameter b � 2c44/(c11 � c12); for isotropic materials,
b = 1.

We have implemented this interatomic potential-based
hyperelastic model for the fcc crystals of Cu, Al and Ni
in the finite element program ABAQUS/Explicit (2006)
by writing user material subroutines. In the dynamic, expli-
cit computational procedures of this program, as detailed
in ABAQUS Theory Manual [15], the nonlinear response
is obtained incrementally, given the internal forces created
by the stresses in the elements, as well as the applied exter-
nal forces at the start of an increment, time t. Finite ele-
ment procedures solve for the acceleration at the start of
the increment by solving the discretized local equations
of motion. The velocities at time t + Dt/2 and the displace-
ments at time t + Dt are updated by a central difference
time-integration procedure. The deformation gradient Fij

for each integration point at time t + Dt is then calculated
based on the updated displacement field. Given the calcu-
lated deformation gradient, a constitutive equation subrou-
tine, called VUMAT in ABAQUS/Explicit, is required in
order to determine the stress in the element at time
t + Dt. In the implementation of stress calculation accord-
ing to Eq. (3), each material point (integration point) is
represented by an fcc lattice, which deforms according to
the local continuum deformation gradient Fij. That is, at
the beginning of the calculation (t = 0), a set of neighbor-
ing atoms is created to represent the atomic environment
of the central atom at the origin, e.g., an atom in the first
neighboring shell should be located at (a0/2, a0/2, 0), an
atom in the second neighboring shell is at (a0, 0, 0), etc.
Here, the lattice spacing a0 is chosen such that the Cauchy
stress is zero at t = 0, and the number of included neigh-
boring atoms is determined by the cut-off radius prescribed
by interatomic potentials [12,13]. For each time increment,
the neighboring atoms update their positions according to
the local deformation gradient Fij, which is generated
according to the imposed boundary conditions. Then the
Cauchy stress rij and tangent modulus cijkl are calculated
by substituting the deformed positions of neighboring
atoms into Eqs. (3) and (4), respectively. Thus, material
properties depend exclusively on the atomistic description
of the system.
2.2. Nonlinear elasticity and shear asymmetry at large strain

In this section, we highlight the important features of
the interatomic potential-based constitutive model: nonlin-

ear elasticity and shear asymmetry at large strain. Consider
an fcc crystal undergoing uniform simple shear in the
Shockley partial direction of f1 11gh11�2i. Fig. 1 shows
the shear stress–strain curves predicted by the EAM poten-
tials. Evidently, the crystal at large shear exhibits nonlin-
earity and asymmetry of shear stress with respect to the
sense of shearing in the h11�2i direction. The former can
be attributed to the elastic softening at large strain, whereas
the latter arises because of the asymmetric packing of
atoms in the h11�2i direction [9]. The two effects critically
control when, where and how a dislocation homogeneously
nucleates beneath the indenter, as detailed in Section 3.
2.3. Dislocation nucleation criterion

Homogenous dislocation nucleation in the bulk perfect
crystal can be triggered by the nonlinear elastic instability
of crystal at large deformation. The onset of instability is
associated with the Hadamard condition of loss of positive
definiteness of the matrix Qjk defined by

Qjk ¼ niðcijkl þ rjkdilÞnl ð5Þ

for any unit vector ni [16,17]. Here, the current and refer-
ence configurations are assumed to coincide; rjk is the Cau-
chy (true) stress and cijkl is the tangent (instantaneous
elastic) modulus, both of which are calculated from the
interatomic potential, see Eqs. (3) and (4). For small defor-
mations, Qjk is positive definite. When

detðQjkÞ ¼ 0; ð6Þ



Fig. 2. Finite element mesh for indentation simulation. The spherical
indenter is modeled as a frictionless, analytic rigid surface. The simulation
cell is one half of the whole system considering the cubic symmetry of the
fcc crystal.
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loss of stability occurs, leading to dislocation nucleation.
Correspondingly, the unit vector ni predicts the activated
slip plane, and the eigenvector gi associated with the matrix
Qjk predicts the slip direction at the onset of dislocation
formation. By comparing with MD simulations, we have
quantitatively verified the accuracy of this nucleation crite-
rion in terms of the predictions of the critical indentation
load, location of nucleation site and activated slip systems
[9].

To appreciate the key difference between the nucleation
criterion of Eq. (6) with the commonly used one such as the
critical resolved shear stress (CRSS), we note that Qjk in
Eq. (6) contains both the tangent modulus cijkl and Cauchy
(true) stress rjk. When a dislocation is about to nucleate
(the corresponding shear strain is large), the magnitudes
of cijkl and rjk become comparable due to elastic softening
of the hyperelastic crystal; the nucleation criterion of Eq.
(6) states that when the decreasing cijkl is balanced with
the increasing rjk, the crystal becomes unstable, leading
to homogenous dislocation nucleation. Since the instability
does not occur precisely when the tangent modulus van-
ishes (equivalently, the RSS maximizes), the nucleation cri-
terion based on the CRSS is not accurate. Moreover, the
CRSS is not a material constant; it depends on other stress
components than just the shear. Thus, even an approxi-
mate use of CRSS to predict nucleation would require a
calibration for different stress (deformation) states, similar
to the construction of a yield surface in stress space in the
plasticity theory. In contrast, the nucleation criterion of
Eq. (6) does not require calibration; nucleation occurs as
a natural consequence of loss of positive definiteness of
the matrix Qjk.

2.4. Simulation setup

Using the IPFEM, we have performed 3D simulations
of nanoindentation by a spherical indenter, and quantified
the critical states of dislocation nucleation. Predictions will
be given as to when and where the dislocation will nucleate
within the crystal, and what slip mode the nucleated dislo-
cation will take. More specifically, indentation is simulated
for a spherical indenter pressed into the (111), (110) and
(100) surfaces of single crystals of Al, Cu, Ni. The radius
of the indenter is 50 nm, the approximate tip size of a nom-
inally sharp Berkovich indenter used in typical nanoinden-
tation experiments. The spherical indenter is modeled as a
frictionless, analytic rigid surface. Since this research is
focused on dislocation nucleation inside the bulk crystal,
the effects of indenter elasticity and contact adhesion are
ignored. However, those effects could play an important
role if a dislocation nucleate directly from the contact sur-
face [18,19]; a detailed study of surface nucleation is
beyond the scope of this work. We have previously per-
formed extensive numerical testing to assess the influences
of geometry of simulation cell, imposed far-field boundary
conditions, element type, and node density by comparing
with the Hertzian solutions for the isotropic and aniso-
tropic, linear elastic material, as detailed in [9]. We found
for a system with the in-plane size of 300 · 300 and depth
of 600 nm, the effect of boundary constraint is sufficiently
minimized. To reduce the computational cost, we simulate
one half of the whole system considering the cubic symme-
try of crystal, as shown in Fig. 2. The boundary conditions
are imposed as follows: the displacement along the bottom
of the mesh is constrained to be zero, while the displace-
ments of lateral surfaces are unconstrained. The graded
mesh comprises 8-node linear brick elements, with typical
size of elements near the indenter about 10 Å. The total
number of elements is 519,332. Indenter is moved down
in displacement control at a sufficiently low rate to mimic
the quasi-static loading condition, as calibrated by the ana-
lytic solutions for indentation on a linear anisotropic elas-
tic material [9].
3. Results and discussions

3.1. Indentation load–displacement response

Fig. 3a–c show the load–displacement (P–h) curves for
nanoindentation on single crystals of Al, Cu and Ni,
respectively. For each crystal, the P–h curves are calculated
for three indentation orientations (111)/(0 11)/(0 01). The
different P–h responses arise because of the elastic anisot-
ropy of single crystals. For Al, the three P–h curves are
very close, consistent with the fact that Al is a nearly iso-
tropic material (b = 1.2, see Table 1). As the elastic anisot-
ropy increases, i.e., from b = 2.5 for Ni to b = 3.2 for Cu,
the variation in the P–h responses also increases for differ-
ent indentation orientations. These results are consistent
with the variation of indentation moduli given in Table 2,
where the crystal is simplified as a linear, anisotropic and
elastic material; such simplification renders the indentation
moduli analytically solvable, thus providing a quantitative
reference to the numerical calculation for the hyperelastic



Fig. 3. Nanoindentation load–displacement curves for indentation on the (111), (110), (100) surfaces of single crystals of (a) Al, (b) Cu and (c) Ni. The
(111) indentations are compared in (d) for the three crystals.
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crystals. We note that the crystal beneath the nanoindenter
should have undergone nonlinear elastic deformation
before homogenous dislocation nucleation. But the effect
of nonlinearity is not significant on the P–h response. This
Table 2
Indentation moduli, E*, for single crystals of Al, Cu and Ni

E�ð1 1 1Þ ðGPaÞ E�ð1 0 0Þ ðGPaÞ
Al 88.9 87.1
Cu 153 135
Ni 254 228

They are calculated by numerical integration using the semi-analytic
indentation solution, with the elastic constants predicted by the inter-
atomic potentials, as listed in Table 1. Specifically, when a cubic crystal
deforms in the regime of linear anisotropic elasticity, the P–h response can
be derived as P ¼ 4

3 E�R1=2h3=2 for a spherical indenter (radius R) on a half
space; for the (111) and (100) indentations, it can be proven that the
contact area is circular because of crystal symmetry, and the semi-analytic
solution is given by [20,21].
is because the P–h curve is not a particularly sensitive indi-
cator on the nonlinear elastic deformation during nanoin-
dentation, as it represents an average of the linear elastic
response at the far field and the nonlinear elastic response
close to indenter. However, the hyperelastic constitutive
model, which is the basis of IPFEM simulations, is essen-
tial to predict dislocation nucleation caused by the nonlin-
ear elastic instability of crystals at large shear, as shown in
Section 3.3.

In Fig. 3a–c, each P–h curve is terminated at an inden-
tation depth (indicated by circle), when the onset of dislo-
cation nucleation is first identified by the nucleation
criterion of Eq. (6). For each crystal, the critical load of
nucleation (Pc and hc) changes considerably for different
indentation orientations, e.g., hf1 1 1g

c : hf1 1 0g
c : hf1 0 0g

c �
5:04 nm : 3:85 nm : 1:93 nm � 2:6 : 2 : 1 for Cu. This
change arises because of the effect of crystallography, as
first shown in Wang et al. [22]. Specifically, consider a sim-
ple situation of dislocation nucleation in the bulk single
crystal under a uniaxial compressive stress r. In this case
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a dislocation tends to nucleate on one of the f111gh11�2i
slip systems, where the resolved shear stress s = mr (m
denotes the Schmid factor) first exceeds the shear resistance
of nucleation in a perfect lattice. By considering the hard
sphere packing of an fcc lattice and noting the effect of
shear asymmetry as shown in Fig. 1, one can readily calcu-
late m and identify the slip system of nucleation; for differ-
ent compression orientations, the ratio of the inverse
Schmid factor is 1/m{1 1 1}: 1/m{1 1 0}: 1/m{1 0 0} = 3:2:1.
One may assume the shear resistance of nucleation sc is
the same for each case, and then obtains rf1 1 1g

c :
rf110g

c : rf1 0 0g
c ¼ 3 : 2 : 1; here, in a first approximation we

ignore the influence of other stress components on sc.
The ratio of rc for different compression orientations is
qualitatively consistent with that of the nucleation load
hc for different indentation orientations, thereby showing
that the variation of hc is dominantly controlled by the
effect of crystallography. While the above simple analysis
clarifies the controlling factor on hc, the IPFEM calcula-
tions enable quantification of Pc and hc by solving the dis-
tribution of nonuniform and nonlinear elastic deformation
beneath the indenter, as shown in Fig. 3.

In Fig. 3d, we compare the P–h curves for the (111)
indentation of the three crystals. It is seen that Ni is much
stiffer than Cu and Al, consistent with the result that Ni has
a higher indentation modulus as shown in Table 2. In terms
of the critical indentation displacements of nucleation, hc, it
is interesting to note that although Cu and Al show very
similar response for uniform simple shear (see Fig. 1), their
hc differ considerably; such difference arises because of crys-
tal anisotropy, as well as the nonuniform deformation
beneath the indenter, as manifested in the different indenta-
tion moduli (see Table 2).
Fig. 4. IPFEM predictions of nucleation sites by nanoindentation on the (100)
nucleation sites; all the solid lines are in the h110i directions and the shaded tri
critical moment of nucleation and for the respective activated slip plane. The
det(Qjk), thus showing the nucleation sites. (For interpretation of the references
of this article.)
3.2. Nucleation site and activated slip system

Fig. 4 shows the predicted nucleation sites from IPFEM
calculations, using Al as an example. As schematically
shown in Fig. 4a, the nucleation site for the (100) indenta-
tion is at the central loading axis. In contrast, it is off the
central axis for the (110) and (111) indentations; the num-
ber of equivalent sites, as well as their locations, is dictated
by crystal symmetry, see [9] for example. In Fig. 4b, we
show the contours of det(Qjk) at the respective critical
moment of nucleation and for the respective activated slip
system. In each case, the gray element (highlighted with red
circles) indicates the nucleation site directly visible on the
surface of the simulation cell. Because of the high symme-
try of indentation orientations, there are multiple equiva-
lent slip systems at each site; the slip system first
activated in experiment or MD simulation would be ran-
domly selected by thermal fluctuations. Our predictions
by IPFEM, which accurately incorporate the effects of elas-
tic softening and crystal anisotropy, have been qualitatively
verified by MD simulations [22]; but they are at variance
with predictions based on the linear elastic analysis [23]
and/or using the stress-based nucleation criterion such as
the maximum equivalent shear stress or CRSS [24].

3.3. Critical resolved shear stress

We calculate the critical resolved shear stress (CRSS), sc,
at the onset of nucleation, and show the CRSS is not an
accurate nucleation criterion. Fig. 5 shows the indentation
displacement versus RSS curves. The RSS, s, is calculated
at the critical nucleation site and for the activated slip sys-
tem, according to s = rijnigj, where the current slip-plane
, (110) and (111) surfaces of single crystal Al. (a) Schematics of location of
angles represent the {111} plane. (b) Contours of det(Qjk) at the respective

gray element (highlighted with red circles) has a small negative value of
to colour in this figure legend, the reader is referred to see the web version



Fig. 5. Nanoindentation displacement versus resolved shear stress at the
critical nucleation site and for the activated slip system for single crystals
of Al, Cu and Ni.

Table 3
The critical resolved shear stress (CRSS) of dislocation nucleation at the
respective nucleation site for nanoindentation of single crystals Al, Cu and
Ni with three indentation orientations

(111) (110) (100)

sc–Cu (GPa) 3.2 3.0 2.3
sc–Al (GPa) 3.8 4.0 3.1
sc–Ni (GPa) 8.2 8.0 4.5
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normal, ni, and slip direction, gi, are related to those in the
unformed crystal, n0j and g0j, by ni ¼ n0jF �1

ji and gi = Fijg0j,
respectively. In Fig. 5, circle represents the CRSS, sc, when
the nucleation criterion is first satisfied in IPFEM calcula-
tions. The respective sc is listed in Table 3 for the three
crystals and three indentation orientations. Importantly,
sc is not a constant for each crystal, and it depends on
the indentation orientation. Fig. 5 also shows that sc is
close to, but not right at the maximum of RSS. This is
due to the elastic-softening effect associated with the hyper-
elastic crystals; namely, according to the physically based
nucleation criterion of Eq. (5), the nucleation occurs when
the tangent modulus cijkl is balanced with the Cauchy stress
rij, rather than when cijkl vanishes or equivalently the RSS
maximizes. Hence, these results clearly demonstrate that
the CRSS is NOT an accurate nucleation criterion; an
approximate use of CRSS needs a calibration by combin-
ing experiments and IPFEM calculations.

Finally, we note that Fig. 5c reveals a numerical artifact
of the RSS response for Ni under the (110) indentation,
i.e., there is an abrupt change of the slope at low loads.
Considering the overall reliable performance of the EAM
potentials, which have been extensively calibrated by com-
paring with experimental or ab inito data [12,13], we
believe such a small artifact should not affect the overall
reliability of the results reported in this study.

4. Summary and conclusions

We have simulated nanoindentation and predicted dislo-
cation nucleation in fcc single crystals of Al, Cu and Ni.
Simulations are performed using the interatomic potential
finite element method, which is a computationally efficient
approach that facilitates the study at length scales large
compared to atomic dimensions, while remaining faithful
to the nonlinear interatomic interactions. We consider
homogenous dislocation nucleation triggered by the non-
linear elastic instability of crystal at large strain and nearly
zero-K temperature. The results show that the critical
resolved shear stress of nucleation is at the GPa-level, close
to the theoretical limit of perfect crystals. However, the
critical conditions of dislocation nucleation, including the
indentation load of nucleation, location of nucleation site,
nucleation stress and activated slip systems, sensitively
depend on the indentation orientation. But these condi-
tions are consistent for different fcc crystals. Our study
highlights the critical role of hyperelasticity (nonlinear elas-
ticity) and crystallography in homogenous dislocation
nucleation, and reveals the deficiency of commonly used
nucleation criterion such as the critical resolved shear
stress.
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We conclude by commenting that for a complete under-
standing of defect formation by nanoindentation, one needs
to take into account the influences of finite temperature [25],
structural heterogeneities (e.g., surface step [18]), pre-exist-
ing dislocations [26], as well as the effect of homogenously
nucleated dislocations on subsequent nucleation [7,27].
Recent development in the activation analysis of thermally
activated dislocation nucleation at the interface [28], surface
[29], and pre-existing defect [30,31], provides a viable
approach to address these issues. With the results from this
study as input (e.g., critical loads, nucleation sites and acti-
vated slip systems), we envision the activation analysis of
nucleation during nanoindentation will enable a quantita-
tive connection between experiments and modeling.
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