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Abstract

The intrinsic coupling between the mechanical and the electric _elds assigns a unique feature for the
fracture in a piezoelectric solid[ We model the kink of a crack by continuous distribution of edge dislocations
and electric dipoles[ The problem admits an approach based on the Stroh formalism[ A set of coupled
singular integral equations are derived for the dislocation and electric dipole density functions associated
with a kinked crack[ Numerical results indicate that the crack tends to propagate in a straight line under a
tensile stress and a positive electric _eld[ For a crack subjected to the mixed mode mechanical loading\ a
superimposed positive electric _eld tends to reduce the kink angle[ The in~uence of the non!singular T!
stress!charge parallel to a crack is also investigated[ It is shown that a transverse tensile stress or a positive
transverse electric _eld will lead to further deviation of the kinked crack from the crack extension line[
Þ 0888 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

Crack kinking plays an important role in the fracture of piezoelectrics in response to the electro!
mechanical loading[ Incipient crack kinking in piezoelectric ceramics subjected to an electric _eld
was _rst reported by McHenry and Koepke "0872#[ By use of birefringence\ Lynch et al[ "0884#
found that an insulated crack would branch and have a feathered appearance in a sample of
7:54:24 PLZT under a cyclic electric _eld[ Branched crack propagation in multilayer piezoelectric
actuators made of Pb""Ni0:2Nb1:2#\ Ti\ Zr#O2 was reported by Furuta and Uchino "0882#[ Park and
Sun "0884a# performed three!point bending test with an unsymmetrical crack in a PZT!3 specimen[
Their observation indicated that the crack propagation deviated from its original direction under
the combined mechanical and electrical loading[ Fracture mechanics analyses for a main crack in
a piezoelectric solid were presented by many investigators\ see Parton "0865#\ Pak "0889#\ Sosa
"0881#\ Shindo et al[ "0881#\ Suo et al[ "0881#\ Sosa and Khutoryansky "0885#\ Zhang et al[ "0887#\
among others[ These works cover a wide range of defect orientations\ di}erent natures of the
applied loads\ and various boundary conditions imposed along the crack surface[
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In mechanics analyses\ the method of distributed dislocations is a powerful tool in studying the
crack kinking problem[ Viewed as a continuous distribution of straight dislocations\ the kinked
crack in an isotropic linear elastic solid was _rst attacked by Lo "0867#[ In the same spirit\ Obata
et al[ "0878# and Azhdari and Nemat!Nasser "0885a\ b# analyzed the crack kinking in a linear
elastic but anisotropic solid[ Extension of this approach to the kinking of an interface crack
between dissimilar anisotropic elastic solids was given by Miller and Stock "0878#\ Wang et al[
"0881# and Wang "0883#[

The crack kinking in a piezoelectric solid o}ers a new twist on the method of continuous
distribution of dislocations] the distribution of electric potential dislocations "or an electric dipole
layer# is required to simulate the electric potential jump across the crack[ Barnett and Lothe "0864#
generalized the Stroh formalism to include the electric potential jump across the slip plane in
piezoelectric materials[ Modeling a crack as dislocations and dipoles\ Pak "0881# analyzed the
electro!elastic _eld in the vicinity of a crack tip[ This approach was recently exploited by Gao et
al["0886# and by Fulton and Gao "0886# to investigate the e}ect of an electric polarization
saturation strip con_ned in a line segment in front of a crack[

The present paper explores the crack kinking in a piezoelectric solid from a fundamental solution
for a dislocation and an electric dipole interacting with a traction!charge free crack[ The analysis
is con_ned within the framework of a linear piezoelectric constitutive law[ The non!linear e}ect of
the polarization switch is ignored by the assumption of a small scale polarization switching zone[
A study addressing the nonlinear switching e}ect on crack kinking may follow the polarization
switching model given by Yang and Zhu "0887# and Zhu and Yang "0886#[ The plan of the paper
is as follows[ In Section 1\ the solution of a dislocation and an electric dipole interacting with a
crack is formulated via the Stroh formalism\ whose details are given in Appendix A[ The electro!
elastic _eld of a piezoelectric crack is given\ and that includes the terms of the T!stress!charge
parallel to the crack[ A set of coupled singular integral equations are derived for the dislocation
and electric dipole density functions associated with a kinked crack[ In Section 2\ numerical
calculations are carried out for the piezoelectric materials under various electro!mechanical loading
conditions[ The concluding remarks are given in Section 3[

1[ Formulation

1[0[ Statement of problem

Consider a main crack of length 1a contained within an in_nite homogeneous piezoelectric
medium\ as depicted in Fig[ 0[ The poling direction is normal to the crack faces[ The origin of the
rectangular coordinate system x0Ðx1 is _xed at the crack center[ The x0!axis coincides with the
crack and the x1!axis directs along the poling direction[ A kink emanates from the right crack tip
and forms an acute angle u with the x0!axis[ A kink tip coordinate system\ x?0−x?1\ is introduced
as shown in Fig[ 0[ The piezoelectric solid is subjected to remote uniform mechanical and electric
loadings[ In what follows\ a prime denotes di}erentiation with respect to the corresponding
argument\ and an overbar represents the complex conjugate[ Unless otherwise speci_ed\ the indices
range from 0 to 2 and summation is implied for the repeated indices[
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Fig[ 0[ Schematic illustration of a kinked crack[

1[1[ A piezoelectric dislocation interactin` with a crack

A kink is modeled by a continuous distribution of dislocations and electric dipoles[ A dislocation
and an electric dipole located at the same point are termed hereafter the piezoelectric dislocation[
The interaction between a piezoelectric dislocation and a traction!charge free crack provides a
fundamental solution for the crack kinking in a piezoelectric solid[ As shown in Appendix A\ all
the mechanical and electrical variables in x0Ðx1 plane can be expressed in terms of three complex
potentials fi"z# "i � 0\ 1\ 2#[ The one!complex!variable approach "see Suo et al[\ 0881# is adopted[
Namely the arguments of three complex potentials are identical and of the form z � x0¦px1[ Once
a solution of fi"z# is obtained\ one may substitute zi "zi � x0¦pix1\ i � 0\ 1\ 2# into each complex
potential to compute the _eld quantities[ The solution of the complex potential vector fdisl can be
built on the superposition of two problems] the solution of a piezoelectric dislocation in an in_nite
homogeneous piezoelectric solid "labeled by H#\ and an electro!elastic _eld to negate the crack
surface traction!charge "labeled by N#\ see Suo "0889#

fdisl � fH¦fN "0#

The solution of a piezoelectric dislocation at the point "x0d\ x1d# in an in_nite homogeneous
piezoelectric medium was given by Pak "0881#[

f H
i "z# � qi ln"z−si#\ si � x0d¦pix1d\ i � 0\ 1\ 2 "1#

where

q � ðq0\ q1\ q2Ł �
0
1p

L−0"B¦BÞ#−0b 0 Cb "2#

The expressions for matrices L and B are given in "A09# and "A00#[ The components b0 and b1 of
the piezoelectric Burgers vector b are the displacement jumps across the slip plane Du0 and Du1\
while the component b2 represents the electric potential jump Df[

From eqn "A03# in Appendix A\ the traction!charge along the x0!axis is

t"1# "x0# � "s10\ s11\ D1# � 1 Re ðLfH?"x0#Ł "3#
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To negate this traction!charge along the crack faces\ a solution based on the complex potentials
fN should be superimposed[ The exact negation provides the following equation for fN

LfN?"z# � −
x"z#
1pi g

a

−a

t"1# "x0#

x¦"x0#"x0−z#
dx0¦Px"z# "4#

where

x"z# �
0

zz1−a1
"5#

and the constant vector P is yet to be determined[ Substituting eqn "3# into eqn "4#\ one can
evaluate the above integral and arrive at

f N?
i "z# � 0

1
"Uij¦Vij#bj "6#

where

Uij � Cij $
0

z−si 0
x"z#
x"si#

−01%\ no sum on i "7#

Vij � s
2

n�0

L
−0

im LmnCnj $
0

z−s¹n 0
x"z#
x"s¹n#

−01% "8#

The constant vector P is determined from the requirement that the displacement be single!valued
" for a circuit taken around the crack and the piezoelectric dislocation\ see Lo\ 0867^ Zhang and
Li\ 0880#\ and given by

P � −
0
3p

ð"B¦BÞ#−0¦"B¦BÞ#−0Łb "09#

1[2[ Electro!elastic _eld of a piezoelectric crack

The electro!elastic _eld of a piezoelectric crack was presented by Sosa "0881# and by Park and
Sun "0884b#[ The solution given in this subsection will emphasize the non!singular T!stress!charge
parallel to the crack[ Consider a crack of length 1a in an in_nite piezoelectric medium subjected
to remote uniform electro!mechanical loadings

t"0#� � "s�
00\ s�

01\ D�
0 # "00#

and

t"1#� � "s�
10\ s�

11\ D�
1 # "01#

The problem can be solved by superposition[ One _rst solves the problem without the crack and
determines the stress!charge on the prospective crack line[ The negating stress!charge is sub!
sequently applied to the crack faces[ The corresponding potentials for the latter problem are given
by
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f crack?"z# �
0
1

L−0t"1#� 0
z

zz1−a1
−01 "02#

The solution has to be converted from the one!complex!variable form into three!complex!variable
representation[ The stress and electric induction vectors are given by\ also see eqns "A5# and "A6#

t"1#crack
i � Re s

2

k�0

LikL
−0
kj t"1#�

j

zk

zz1
k−a1

"03#

and

t"0#crack
i � Ti−Re s

2

k�0

LikL
−0
kj t"1#�

j pk

zk

zz1
k−a1

"04#

In eqn "04#\ Ti represents the non!singular T!stress!charge vector in the expansion of the crack tip
electro!elastic _eld[ It is given by

Ti � t"0#�
i ¦Re s

2

k�0

LikL
−0
kj t"1#�

j pk "05#

In deriving the above results\ the crack is assumed to be traction free and electric impermeable\
namely]

s01 � s11 � D1 � 9\ x0 $"−a\ a# "06#

The validity of the electric impermeable assumption was discussed by Pak "0889# and by Suo et
al[ "0881#[ An impermeable crack requires no external charge on either crack face and negligible
electric induction inside the ~aw[ The electro!elastic analyses that incorporate the electric _eld
within the ~aw have been pursued by many investigators\ for example see Sosa and Khutoryansky
"0885#\ Zhu and Yang "0886#\ and Zhang et al[ "0887#[ The results suggest that the impermeable
formulation can be derived as a particular case of the exact model[ As the _rst attempt to investigate
the crack kinking in a piezoelectric solid\ we will regard both the main crack and the kink
impermeable[

The traction free condition will no longer hold when the upper and lower faces of the crack
come into contact[ De_ne the displacement and electric potential jumps across the crack as

d"x0# � u¦"x0#−u−"x0# "07#

From eqns "A00# and "02#\ one may derive the jumps in displacements and electric potential[ The
leading terms of them are given by]

d"r# � z1arHt"1#� "08#

where r represents a distance behind the crack tip[ The 2×2 matrix H is given by

H � B¦BÞ "19#

Since H10 � 9 "see Suo et al[\ 0881#\ the condition for an open crack requires that
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D�
1

s�
11

× −
H11

H12

"10#

For the crack closure induced by a negative electric _eld\ the kinking problem may be solved by
modeling the main crack together with the kink as a continuous distribution of dislocations\
parallel to the analysis given by Hayashi and Nemat!Nasser "0870# for the crack kinking from an
interface crack[

1[3[ Sin`ular inte`ral equations

A kink of length l is modeled by continuous distribution of piezoelectric dislocations[ Based on
the solution of a piezoelectric dislocation interacting with a crack and the solution of a piezoelectric
crack\ the problem of a kinked crack can be solved through singular integral equations[ The
traction free and electric impermeable surface condition of the main crack is satis_ed by the
solutions in the previous subsections[ Along the kink\ we require that

s0?1? � s1?1? � D1? � 9\ x?0 $"9\ l# "11#

A set of coupled singular integral equations can be derived by enforcing these conditions

g
l

9

Mijbj

x?0−z
dz¦g

l

9

Kijbj dz � −t"1#crack
i? "12#

where

M0j � 1 Re s
2

k�0 $
Vk

vk

Ckj%\ M1j � 1 Re ðvkCkjŁ\ M2j � 1 Re ðlkCkjŁ "13#

K0j � Re ðVk"Ukj¦Vkj#Ł\ K1j � Re ðv1
k "Ukj¦Vkj#Ł\ K2j � Re s

2

k�0

ðlkvk"Ukj¦Vkj#Ł "14#

vk � cos u¦pk sin u "15#

Vk �"0−p1
k # sin u cos u−pk cos 1u "16#

In the right hand side of eqn "12#\ the t"1#crack
i? term represents the stress and electric induction due

to the presence of the main crack\ and is expressed by the local coordinates x?i[ In eqn "12#\ the
dislocation densities b0"z#\ b1"z# and the electric dipole density b2"z# are unknown[ We extract the
singularity from bk"z# by

bk"z# �
b¼k"z#

zz"l−z#
"17#

where b¼k"z# are the non!singular parts of bk"z#[ The singularity at the kink root is considered to be
less than one half\ based on the singularity analysis of Bogy "0860#[ Hence\ the end value b¼k"9# can
be taken as zero[ The numerical method of Erdogan "0867# is used to solve the singular equations[
Once the density functions of piezoelectric dislocations are known\ the intensity factors for stress
and electric induction at the kink tip can be obtained by
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k � "KII\ KI\ KD# � pX
1p

l
Mb¼ "l# "18#

where

b¼ "l# � "b¼0"l#\ b¼1"l#\ b¼2"l## "29#

are the values of b¼i"z# at the kink tip and the matrix Mij is de_ned in eqn "13#[

2[ Results and discussion

The material constants of PZT!3\ as listed in Appendix B\ are used in the calculations[ A far
_eld electric displacement boundary condition is adopted[ The present formulation is suitable to
investigate the e}ect of a positive electric _eld "D�

1 × 9# on the kinking behavior of piezoelectrics[
A negative electric _eld may lead to crack surface contact\ then invalidate the electro!elastic _eld
given in the last section[ For PZT!3\ the condition "10# requires that D�

1 :s�
11×−9[678×09−8

C:N[ A negative electric _eld within this range has little e}ect on the crack kinking of PZT!3[
Moreover\ the scale of the polarization switching zone under a negative electric _eld is much larger
than that under a positive electric _eld of the same intensity "see Yang and Zhu\ 0887^ Zhu and
Yang\ 0886#[ Therefore\ the non!linear e}ect of polarization switching should not be ignored for
the cracking of piezoelectrics under a negative electric _eld[

Di}erent criteria have been proposed to predict the direction of crack kinking[ Commonly used
fracture criteria\ such as kinking along the direction of the maximum KI\ the zero KII\ the maximum
hoop stress and the maximum energy release rate\ lead to similar prediction of crack propagation
path for a crack in an isotropic material[ However\ these criteria may predict di}erent kinking
angles for anisotropic materials[ Azhdari and Nemat!Nasser "0885b# made a thorough study on
various criteria[ They found that a K!based fracture criterion\ in some cases\ does not yield the
same result as the one obtained by an energy based criterion[ For piezoelectrics\ it is shown that
the K!based criterion and the energy based criterion di}er when the energetics of the electric _eld
is taken into account\ see Pak "0881# and Zhang et al[ "0887#[ Furthermore\ considering the electric
ductility of piezoelectrics\ Gao et al[ "0886# and Fulton and Gao "0886# veri_ed that the global
energy release rate di}ers from the energy release rate calculated from the crack tip[ In the present
paper\ the maximum mode I kink tip stress intensity factor "SIF# criterion is adopted to predict
the kinking direction[

We _rst consider a piezoelectric crack with an in_nitesimal kink length\ a:l � 095[ Figures 1 and
2 plot the mode I and II SIFs at the kink tip\ normalized by K9 � s�

11zpa\ under di}erent positive
electric _elds[ The maximum of the mode I SIF always occurs at u � 9[ If the fracture toughness
of a piezoelectric solid is isotropic\ the crack will propagate in a straight line under a tensile stress
and a positive electric _eld[ Due to electro!mechanical coupling\ a pure mechanical loading can
also induce an electric displacement intensity factor at the kink tip\ as shown in Fig[ 3[

Next\ we consider a kinked crack which is induced by an initial defect or an asymmetric load[
Figure 4 plots the mode I kink tip SIFs for di}erent kink lengths[ The angles of the kinks are
chosen to be 9\ p:5 and p:3[ As expected\ the electric _eld has no in~uence on the SIF when u � 9[
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Fig[ 1[ Mode I SIF at the kink tip for a kinked crack under a tensile and a positive electric _eld\ K9 � s�
11zpa[

Fig[ 2[ Mode II SIF at the kink tip for a kinked crack under a tensile stress and a positive electric _eld[

For u � p:5 and p:3\ the e}ect of a positive electric _eld\ i[e[\ D�
1 :s�

11 � 09−7 C:N\ is to lower the
kink tip SIF when the kink length is small[ Azhdari and Nemat!Nasser "0885b# veri_ed that SIFs
at the tip of a vanishingly small kink would become independent of the small length l[ Figure 4
con_rms that KI approaches an asymptote as a:l : �\ and extends the same conclusion to a



T[ Zhu\ W[ Yan` : International Journal of Solids and Structures 25 "0888# 4902Ð4916 4910

Fig[ 3[ Electric displacement intensity factor at the kink tip induced by a tensile stress _eld[

Fig[ 4[ Mode I kink tip SIF vs the kink length[
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Fig[ 5[ Mode I kink tip SIF for a kinked crack under a mixed mode mechanical loading "s�
01 � s�

11# and a positive
electric _eld[

piezoelectric medium[ As the kink length increases\ the SIF at the kink tip rises monotonically
under a su.ciently large positive electric _eld[ With a further increase of the kink length\ the
applied positive electric _eld might cause a SIF at the kink tip that exceeds the one under a pure
mechanical loading[

Crack kinking will occur in piezoelectrics under an asymmetric mechanical loading[ Park and
Sun "0884a# observed crack kinking in a three!point bending test with an asymmetric crack in a
PZT!3 specimen[ In the following calculation\ the far _eld shear stress is chosen to be equal to the
tensile stress[ Figure 5 depicts the variation of the mode I kink tip SIF for an in_nitesimal small
kink length a:l � 095[ The maximum value of SIF is achieved at an angle of −54>[ Thus\ the crack
will propagate in an oblique path[ Furthermore\ one can observe the e}ect of positive electric _elds
on kinking from Fig[ 5[ Both the kink tip SIF and the kink angle will decrease with the rise of
applied positive electric _elds[

The stress parallel to a crack may bear considerable e}ect on crack kinking in elastic materials\
as addressed by Cotterell and Rice "0879#\ Gao and Chiu "0881# and Wang "0883#[ For pie!
zoelectrics under a mixed mode mechanical loading "s�

01 � s�
11#\ the e}ects of the transverse stresses

on the variation of kink tip SIFs are shown in Fig[ 6\ and the e}ects of the transverse electric _elds
on the kink tip SIFs are given in Fig[ 7[ It can be seen that a transverse tensile stress or a positive
transverse electric _eld will enlarge the kink angle\ while a transverse compress stress or a negative
transverse electric _eld will reduce the kink angle[
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Fig[ 6[ E}ect of a transverse stress on the variation of the mode I kink tip SIF for a kinked crack under a mixed mode
mechanical loading "s�

01 � s�
11#[

Fig[ 7[ E}ect of a transverse electric _eld on the variation of the mode I kink tip SIF for a kinked crack under a mixed
mode mechanical loading "s�

01 � s�
11#[

3[ Conclusion

The present investigation models the kink of a crack by continuous distribution of edge dis!
locations and electric dipoles[ The problem admits an approach based on the Stroh formalism[ A
set of coupled singular integral equations are derived for the dislocation and electric dipole density
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functions associated with a kinked crack[ Numerical results indicate that the crack tends to
propagate in a straight line under a tensile stress and a positive electric _eld[ For a crack subjected
to a mixed mode mechanical loading\ a superimposed positive electric _eld normal to the crack
tends to reduce the kink angle[ The non!singular T!stress!charge parallel to a crack also a}ects its
kinking behavior[ A transverse tensile stress or a positive transverse electric _eld will enlarge the
kinking angle from the crack extension line\ while a transverse compressive stress or a negative
transverse electric _eld will reduce it[
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Appendix A] Stroh formalism for in!plane piezoelectric problem

Barnett and Lothe "0864# and Suo et al[ "0881# have formulated the general solution of a
linear piezoelectric material[ Introduce a material coordinate system "X0\ X1\ X2#\ where the poling
direction is parallel to the X2!axis[ Attention is focused on the _eld in X0ÐX2 plane\ where the out!
of!plane displacement does not couple with the in!plane displacements and the electric potential[
For convenience\ the X0ÐX2 plane is re!labelled as x0Ðx1 plane in analysis[ A general solution in
x0Ðx1 plane is given by

u � "u0\ u1\ f# � af"z# "A0#

where

z � x0¦px1 "A1#

The number p and the column a are determined by

ðQ¦"R¦RT#p¦Tp1Ła � 9 "A2#

where the 2×2 matrices Q\ R and T are

Q � &
c00 9 9

9 c33 e04

9 e04 −k00
'\ R � &

9 c02 e20

c33 9 9

e04 9 9 '\ T � &
c33 9 9

9 c22 e22

9 e22 −k22
' "A3#

Note that the elastic\ piezoelectric and dielectric constants in the above matrices are represented
in the material coordinate system "X0\ X1\ X2#[ Equation "A2# corresponds to an eigenvalue prob!
lem[ Let p0\ p1 and p2 be the roots with positive imaginary parts of the eigen!equation\ ai the
associated columns\ and zi � x0¦pix1[ The displacement and electric potential are expressed by

u � 1 Re s
2

i�0

aifi"zi# "A4#

The stress and induction are given by
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t"0# � "s00\ s01\ D0# � −1 Re s
2

i�0

lipi f ?i"zi# "A5#

t"1# � "s10\ s11\ D1# � 1 Re s
2

i�0

li f ?i"zi# "A6#

where the columns li are given by

li �"RT¦piT#ai �
−0
pi

"Q¦piR#ai "A7#

De_ne 2×2 matrices

A � ða0\ a1\ a2Ł\ L � ðl0\ l1\ l2Ł "A8#

Every column ai is uniquely determined up to a complex!valued multiplicative constant\ that allows
the following normalization]

L � &
−p0 −p1 −p2

0 0 0

l0 l1 l2
' "A09#

De_ne a 2×2 matrix B

B � iAL−0 "A00#

Following the one!complex!variable approach by Suo et al[ "0881#\ we introduce a column of a
single variable de_ned as

f"z# � ð f0"z#\ f1"z#\ f2"z#Ł "A01#

It follows that

u � 1 Re ðAfŁ "A02#

t"1# � 1 Re ðLf ?Ł "A03#

Appendix B

Material constants for PZT!3 piezoelectric ceramics "Park and Sun\ 0884a# are used in numerical
calculations[

Elastic constants]

c00 � 02[8×0909 N:m1\ c22 � 00[2×0909 N:m1\ c01 � 6[67×0909 N:m1

c02 � 6[32×0909 N:m1\ c33 � 1[45×0909 N:m1

c55 � 0
1
"c00−c01# � 2[95×0909 N:m1

Piezoelectric constants]
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e22 � 02[73 C:m1\ e20 � −5[87 C:m1\ e04 � 02[33 C:m1

Dielectric constants]

k00 � 5[99×09−8 F:m\ k22 � 4[36×09−8 F:m
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