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We present a detailed account of an atomistic study of three-dimensional lattice trapping
barriers to brittle fracture in Si. By means of a prototypical interatomic potential model,
we map out the molecular details of the evolution of atomically sharp cracks in the (111)
cleavage plane with straight crack fronts along the ½1�10� and ½11�2� directions,
respectively. The thermally activated processes of bond rupturing along the crack
front are quantitatively characterized using a reaction pathway sampling scheme. The
calculated minimum energy paths reveal a mechanism of kink-pair formation and
migration in facilitating the crack front advancement. We show that the physical origin
of directional anisotropy in cleavage crack propagation can be attributed to a difference
in the kink-pair formation energy for different crack orientations. The effects of
interatomic potentials are delineated by comparing the Stillinger–Weber model with an
environment-dependent model.
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1. Introduction

Ample experimental evidence (e.g. Wiederhorn 1967; Lawn 1993) has indicated
that cracks in many brittle solids are able to undergo quasi-static extension
under sustained, constant loading, at least for a range of applied loads. One of the
key microscopic steps controlling this time-dependent crack growth is the stress-
mediated, thermally activated bond ruptures at the crack tip, either with or
without the aid of reactive foreign species from the environment. The
microscopic energy barriers that limit the kinetic rate of bond rupture are the
so-called ‘lattice trapping’ barriers (Thomson et al. 1971). Specifically, the total
energy of a cracked body under stress is not a smooth function of crack length on
the microscopic scale. Owing to the periodicity of the discrete lattice, the energy
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landscape has an atomic-scale corrugation. As a result, a crack tip could be
trapped in a local energy minimum on the energy surface, just as a dislocation is
trapped by the Peierls barrier (Peierls 1940). The mobility of this crack is then
controlled by the stress-mediated activation energies, measured by the barrier
heights of the saddle points on the edge of the energy well. It is generally
recognized that quasi-static crack extension is inherently a three-dimensional
process involving a series of localized bond breaking events at the crack front
(Lawn 1975; Thomson et al. 1987; Marder 1998). For a realistic estimate on the
kinetic rate of crack growth, it is then essential to characterize the lattice
trapping effect quantitatively in a three-dimensional setting.

Despite recent advances in experimental techniques for probing atomic
structures near the crack tip (e.g. Celarie et al. 2003; Wiederhorn et al. 2003),
computer simulation remains the most effective way of studying the atomic
process of crack-tip bond breaking (e.g. Sinclair & Lawn 1972; Sinclair 1975;
Spence et al. 1993; Pérez & Gumbsch 2000a,b; Bernstein & Hess 2003; Zhu et al.
2004b). As a continuing effort along this line, we report in this paper in full
details the atomistic calculation of three-dimensional lattice trapping barriers to
brittle fracture in Si. The study is carried out by systematically probing the
potential energy surface of a cracked system calculated using the Stillinger–
Weber (SW) interatomic potential (Stillinger & Weber 1985). We determine
quantitatively the transition pathways of localized bond breaking at the stressed
crack front using an effective reaction pathway sampling scheme, the nudged
elastic band (NEB) method (Jónsson et al. 1998). The atomic geometries and
energy variations along the transition pathways reveal the mechanistic role of
kink-pair formation and migration along the crack front. We find that the origin
of the directional dependence in cleavage crack propagation can be explained in
terms of the differences in the energetics of kink-pair formation for two different
crack orientations. Using the geometries and energetics of crack front kink pairs
presented in this paper as input, it is conceivable that a coarse-grained study of
the time evolution of crack front morphology becomes now feasible along the
lines of Lawn (1975) and Cai et al. (2000).
2. Model and method

(a ) Geometry

We consider an atomically sharp crack on the (111) plane with a straight crack
front along the ½1�10� and ½11�2� directions, denoted as ð111Þ½1�10� and ð111Þ½11�2�
crack, respectively (see figure 1a). Figure 1b,c shows the relaxed atomic
configurations near the crack tip for the two crack orientations at respective
Griffith loads, determined later in §§3a and 4. For both orientations, the
atomistic simulation cell is a cylinder cut from the crack tip, with a radius
RZ80 Å. Atoms within 5 Å of the outer surface are assigned a prescribed
displacement field given by the anisotropic linear elastic Stroh solution (Stroh
1958; Suo 1990), and all remaining atoms are free to move. To bring out the
three-dimensional nature of crack front propagation, the simulation cell length
along the cylinder axis is taken to be suitably long, 20 unit cells, with periodic
boundary condition (PBC) imposed. Because the 12-atom unit cell for Si is
orthorhombic, the length l along the crack front and the number of atoms N in
Proc. R. Soc. A (2006)
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Figure 1. (a) Schematic of an atomically sharp crack advancing by the double-kink mechanism; (b)
side view of the atomic structure surrounding the crack tip for the ð111Þ½1�10� crack; (c) side view of
the atomic structure surrounding the crack tip for the ð111Þ½11�2� crack.
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the cell are different for the two crack orientations. For the ð111Þ½�110� crack,
lZ76.8 Å and NZ77 200; for the ð111Þ½11�2� crack, lZ133.0 Å and NZ133 760. In
both cases, the coordinate system is such that the x3-axis is along the crack front,
the x2-axis is [111] and the cracks extend in the direction along the x1-axis.
(b ) Interatomic potentials

The main results presented in this paper are calculated using the three-body
SW potential (Stillinger & Weber 1985). The material properties, including
lattice parameter, elastic constants and relaxed {111} shuffle plane1 surface
energy, are listed in table 1. For comparison, these properties are also calculated
using the environment-dependent interatomic potential (EDIP) (Bazant et al.
1997; Justo et al. 1998). While the SW potential was fitted mainly to bulk
diamond cubic and liquid Si in an empirical fashion, the EDIP potential was
more rationally constructed with sp2- and sp3-hybridized bonding as targets at
the very beginning, and fitted to a much larger database. Both potentials,
however, describe the more local s-bonding comparatively better in practice
than the more delocalized p-bonding. Owing to the short-range nature of the two
potentials (Holland & Marder 1999; Bernstein & Hess 2001), the cleaved {111}
surfaces are the ideal 1!1 type without reconstruction. Figure 2 shows the
cohesive responses of uniformly cleaving a perfect crystal of Si along the {111}

1 For Si with a diamond-cubic structure, there are two types of {111} plane: one is the shuffle plane,
which cuts through single covalent bonds along the direction perpendicular to the {111} plane, and the
other is the glide plane,which cuts through triplets of covalentbonds inclined equally to the {111}plane.

Proc. R. Soc. A (2006)
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Figure 2. Cohesive response of cleaving a single crystal of Si along the {111} shuffle plane (solid line
is from the SW potential and dashed line from the EDIP potential).

Table 1. Lattice parameter (in Å), elastic constants (in GPa) and relaxed {111} shuffle plane
surface energy (in J mK2) of Si.

a0 C11 C12 C44 gs

Expt. 5.429a 167a 65a 81a 1.24b

SW 5.431 162 82 60 1.45
EDIP 5.430 175 62 71 1.05

aBalamane et al. (1992).
bSpence et al. (1993).
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shuffle plane into two blocks. Here, surface traction is plotted as a function
of opening displacement normalized by the equilibrium interplanar spacing
d0Z

ffiffiffi
3

p
a0=4Z2:35 Å. We note that in order to integrate these curves to obtain

the correct surface energy, the tractions calculated from the short-range SW and
EDIP models are generally larger than the real value needed for the same
interplanar separation (Holland & Marder 1999; Bernstein & Hess 2001).
Comparing the two potentials, besides a spurious shoulder on the rising branch of
the EDIP potential, significant differences are seen in the peak stress as well as in
the slope on the falling side of the cohesive response. Beyond the interplanar
separation of respective traction peaks, the traction calculated from the SW
potential gradually decreases to zero, while the response from the EDIP potential
exhibits a sharp drop. The influence of the interatomic force law on the lattice
trapping effect has been investigated by Sinclair (1975), Thomson et al. (1987),
Curtin (1990) and Gumbsch & Cannon (2000). Using simplified interatomic
potentials, they found the slope of the falling side of the force law critically affects
the loading range within which the lattice trapping effect exists (Thomson et al.
1987). The effects of the SW and EDIP potentials on lattice trapping barriers will
be discussed in §5.
Proc. R. Soc. A (2006)



1745Three-dimensional lattice trapping
(c ) Finding transition pathways of crack extension at different loads

Each crack is subjected to a pure mode I load as given by the stress intensity
factor KI. Finding the transition pathways and associated activation energies for
crack-tip bond rupture requires probing the potential energy surface of the
system in a multi-dimensional configuration space under KI loading. We apply
the NEB method (Jónsson et al. 1998; Henkelman & Jónsson 2000) to sample the
transition pathways. The NEB calculation requires a knowledge of both the
initial and final states; one needs to identify two different local energy minima on
the same potential energy surface mediated by KI. For the present simulation
setup, both the initial and final states are well defined. They correspond
respectively to the equilibrium atomic configurations before and after crack
extension in the x1 direction by one atomic spacing, denoted as Da. After the
initial and final states are identified using the energy minimization scheme, a
discrete elastic band consisting of a finite number of replicas (or images) of the
system is constructed by linear interpolation to connect the two end-states
(Jónsson et al. 1998). Note that the K-field load is applied via the displacement
control method, which requires the positions of atoms at the outer boundary of
the simulation cell to be the same for both the initial and final states, as well as
for those intermediate replicas along the pathway. Then a spring interaction
between adjacent replicas is added to ensure continuity of the path, thus
mimicking an elastic band. An optimization of the band, involving the
minimization of the forces acting on the replicas, brings the band to the so-
called minimum energy path (MEP). MEP is defined as a continuous path in a
3Nf -dimensional configuration space (Nf is the number of free atoms), with
the property that at any point along the path the atomic forces are zero in the
3NfK1-dimensional hyperplane perpendicular to the path (Sorensen et al. 2000).
The energy maximum along the MEP is the saddle-point energy, which gives the
activation energy barrier. The calculation is considered to be converged when the
potential force on each replica vertical to the path is less than 0.002 eV ÅK1.

Of particular note is that in NEB calculation, the reaction coordinate is
unknown a priori and emerges as a natural result from the converged pathway.
Specifically, we define the hyperspace arc length along the MEP, i.e.Ð
MEP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx3Nf

$ dx3Nf

p
, as the reaction coordinate, where x3Nf

denotes a state in the
hyperspace. Empirically, the bond length of the Si–Si bond undergoing rupture
has been taken as an approximate reaction coordinate (e.g. Bernstein & Hess
2003). This approach of calculating the energy barrier essentially corresponds to
finding the maximum point along a path which is constructed by connecting all the
energy minima within a series of hyperplanes vertical to a specific direction, i.e.
the direction Dsx3Nf

that corresponds to the degree of freedom represented by the
Si–Si bond distance in a multi-dimensional hyperspace. Clearly, it is only in some
cases (e.g. dx3Nf

$Dsx3Nf
is always positive) that this path agrees with the MEP

defined above and thus gives an exact result for the activation energy barrier. Our
calculations confirm that due to the localized nature of Si bond breaking, the path
obtained from the calculation using the empirical reaction coordinate of the Si–Si
bond length is close to the actual MEP in that they give the same transition states
and barrier heights. Thus, the corresponding more abstract, though physically
rigorous, reaction coordinate obtained from the NEB calculation can be
approximately understood as the bond length of the breaking Si–Si bond. In any
Proc. R. Soc. A (2006)
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event, the NEB method represents a robust way of calculating the barrier height;
it can be directly applied to study more complicated transition pathways when
the process of bond rupture involves an interaction with foreign chemical species
(e.g. Zhu et al. 2005).
3. Formation and migration of a kink pair at the ð111Þ½1�10� crack front

In this section, we report on the study of a (111) crack with a straight crack front
along the ½1�10� direction using the SW potential. This crack orientation has been
used in most two-dimensional simulations of Si cleavage fracture in the
literature.

(a ) The Griffith load KIG

We first determine the Griffith load KIG, at which the change in the system
total energy DE is zero when the crack extends in the ½11�2� direction by one
atomic spacing Da, with the in-plane borders of the simulation cell fixed. For the
present setup with 20 unit cells along the ½�110� direction (PBC), 20 bonds need to
be broken along the crack front. The value of KIG can be estimated from the
relaxed surface energy gs using the Griffith relation in linear elastic fracture
mechanics (LEFM) (e.g. Rice 1978),

DE Z ðGcK2gsÞDAZ 0; ð3:1Þ
where Gc denotes the critical strain energy release rate and DAZlDa is the area
of newly created surface. For a linear elastic, anisotropic solid, Gc, is related to
KIG by

Gc Z
1

4
H22K

2
IG; ð3:2Þ

where H22 is the effective compliance of the cracked system on the x1Kx2 plane; it
is the 22 component of the matrix H defined by eqn (2.13) in the paper of Suo
(1990). Note that H is defined in terms of elastic constants in the global
coordinate system (x1, x2, x3), where the crack front is along the x3-axis. For the
ð111Þ½1�10� crack, the computed H22 is 2.692!10K11 PaK1 using the elastic
constants given by the SW potential as listed in table 1. Then substitution of H22

and surface energy gs into equations (3.1) and (3.2) gives an estimate of the
Griffith load KIGZ0:656 MPa

ffiffiffiffi
m

p
. On the other hand, direct atomistic

calculation detailed in §3b gives a numerical result of KIGZ0:646 MPa
ffiffiffiffi
m

p
.

The good agreement can be taken as a measure of the accuracy in our atomistic
simulations.

(b ) Two-dimensional versus three-dimensional crack extension at KIG

Two competing pathways are studied that advance the crack along the ½11�2�
direction by one atomic spacing. We focus on comparing the overall features of
the two pathways in this subsection, further discussion of the three-dimensional
pathway will be given in §3c.

The first pathway is characterized by simultaneously breaking every bond
along the crack front. This is essentially a two-dimensional fracture mode, since
what happens within a unit cell is repeated along the crack front direction.
Proc. R. Soc. A (2006)
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Figure 3. Energy variation along the MEP for breaking 20 crack front bonds at the Griffith load
KIGZ0:646 MPa
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: (a) simultaneous bond rupture and (b) sequential bond rupture.
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The corresponding MEP can be simply calculated using a two-dimensional crack
configuration. That is, only one unit cell is needed along the crack front with
PBC imposed. Obviously, the activation energy will grow linearly with the
thickness of the simulation cell in the crack front direction. For later
comparisons, figure 3a shows the energy variation along the MEP of breaking
20 bonds simultaneously. Here, symbols represent energies of the replica
configurations, while the continuous curve is constructed by cubic-polynomial
interpolation. The reaction coordinate is the normalized hyperspace arc length
along the MEP. It is seen that in advancing the crack by one atomic spacing
along the ½11�2� direction, the net change in total energy between the initial and
final states is zero at KIGZ0:646 MPa

ffiffiffiffi
m

p
. This Griffith load is obtained by trial-

and-error search. Specifically, we determine KIG by varying the value of KI until
an approximate equality between initial and final energy states is obtained; the
value of KI that accomplishes this being equal to KIG. Zero energy change at KIG

is due to the cancellation between the elastic energy decrease and the surface
Proc. R. Soc. A (2006)
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energy increase. Note that the MEP shown in figure 3a has only a single peak; the
activation energy of about 12.85 eV corresponds to an average of 0.64 eV per
crack front bond.

In contrast to the first pathway which is two-dimensional in nature, the second
pathway involves breaking 20 bonds sequentially along the crack front, which is
inherently a three-dimensional process. The specific pathway of sequential bond
ruptures that we study involves breaking a single bond at the centre of the
20-bond cell, and then breaking, one by one, bonds to either side of the centre
bond; other competing three-dimensional pathways will be discussed in §5b.
Figure 3b shows energy variation along the MEP of sequential bond breaking,
where the normalized reaction coordinate s is defined such that each integer
number s labels a locally equilibrated state with s broken bonds on the crack
front. Between s and sC1, the coordinate denotes a normalized hyperspace arc
length along the MEP of further breaking the (sC1)th bond. Correspondingly,
each circle in figure 3b represents the energy, relative to that of the equilibrium
state with a straight crack front, of a metastable state of local equilibrium with s
broken bonds on the crack front. The curve with a single peak connecting two
adjacent circles gives the energy variation along the MEP of further breaking one
more bond. For clarity, we plot only the interpolated curve to indicate
continuous energy variation along the MEP, and leave out the discrete data
points corresponding to the calculated energies of 15 relaxed replica
configurations between two adjacent circles. Note that the overall kinetic rate
for the second mechanism can be determined by the maximum barrier height
which corresponds to the saddle point on the MEP of breaking the 11th bond.
The overall kinetic barrier is therefore about 2.02 eV for the second pathway.

Comparing energy variations along the two transition pathways at KIG, which
have the same initial and final states, we quantitatively confirm that even for the
present simulation cell with nanoscale thickness (76.8 Å) along the crack front,
the three-dimensional extension mode is far more favourable kinetically than the
two-dimensional mode for cleavage crack propagation. In the rest of the paper,
we will therefore focus on the energetics of three-dimensional extension under
different load levels and for different crack orientations.
(c ) Geometry and energetics of forming a crack front kink pair at KIG

We now consider the three-dimensional cleavage mode in detail. Figure 4
shows the profile of the crack front for a representative state of local energy
minimum with 10 broken bonds (sZ10). A continuous field of crack opening
Proc. R. Soc. A (2006)
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displacement across the two adjacent (111) cleaving planes is rendered by cubic-
spline interpolation of the openings at discrete lattice sites. Readers should be
aware that this is just a useful way to visualize completely discrete data from
atomistic calculations. It can be seen that two kinks of opposite signs with sharp
features are developed locally on each side of the advancing crack front. This
highly localized mode of crack opening distribution is in distinct contrast with
our previous result of crack-tip nucleation of an embryonic dislocation loop in an
FCC Cu crystal, which exhibits a significant spread of shear fault distribution
across the glide plane (see fig. 3b in Zhu et al. 2004a). The difference in the range
of opening versus shearing distribution at the crack front can be correlated to
that in the bonding characteristics: Si has directional, localized covalent bonding,
while Cu has delocalized metallic bonding.

Given the crack front with s broken bonds shows the characteristics of a
double kink, we next describe the energetics of crack front evolution in terms of
kink-pair formation and migration energies. Consider first the kink-pair energies
as given by the circles in figure 3b. Now we extract these data points and replot
them in figure 5a; the envelope of figure 3b is shown in figure 5a. Note that the
new abscissa is taken as the kink-pair separation dKhs!l0, where l0 denotes the
unit-cell length in the crack front direction, being equal to a0=

ffiffiffi
2

p
Z3:84 Å, and

the integer number s is the reaction coordinate defined in §3b, which labels a
local equilibrium state with s broken bonds on the front. We also show in
figure 5a the kink-pair energies for a larger calculation consisting of 30 unit cells
along the crack front (lZ115.2 Å), but with otherwise identical setup. It is seen
that in both cases, to break the first bond at the straight crack front requires an
input of extra energy from the thermal reservoir. This trend of energy increase
continues with subsequent bond breaking. However, the energy increment
associated with further bond breaking will gradually decrease as the separation of
kink pair dK increases. Consequently, the kink-pair energy approaches an
asymptotic value as dK becomes large enough. To model the effect of kink-pair
separation, the system total energy (in reference to a straight crack front) can be
partitioned into dK-dependent and dK-independent parts, the former is the elastic
interaction energy Eel between two kinks of opposite signs separated by dK, while
the latter is twice the self-energy EK of an individual kink. We write

DEðdKÞZEelðdKÞC2EK ð3:3Þ
for the ideal situation of a kink pair embedded on an infinitely long, and
otherwise perfectly straight, crack front. In equation (3.3), Eel(dK) will vanish
asymptotically as dK increases. EK then contains all the remaining atomistic
energetic information, and can be interpreted as the formation energy of an
isolated kink on the crack front.

From figure 5a, the kink formation energy EK estimated from the plateau of
the solid line, which comes from the simulation cell of lZ76.8 Å, is about 0.80 eV.
This value is very close to an estimate of 0.81 eV from the thicker simulation cell
(lZ115.2 Å). Furthermore, figure 5a shows that a further increase of dK beyond
l/2 will result in a decrease in the kink-pair energy. This is due to image
interactions, as we are not actually in the ideal situation of equation (3.3) of an
infinitely long crack front. Specifically, when dKOl/2, the attractive interaction
from the image of the other kink in the neighboring simulation cell will begin
to dominate, leading to a decrease of the total energy. Because, by definition,
Proc. R. Soc. A (2006)
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the initial and final states have the same energy at KIG in advancing the crack by
one atomic spacing in the x1 direction, i.e. the crack front at x1Z0!Da and
1!Da before and after advancement, it is straightforward to show that after the
image interactions have been taken into account, the kink-pair energy in the
PBC cell should be roughly symmetric with respect to dKZl/2, as numerically
shown in figure 5a. Note that our calculations also show that Eel(dK) is a rapidly
decreasing function with dK, so even in the presence of image interactions we can
extract EK to be around 0.8 eV at KIG.

Consider next the kinetic barriers for kink migration. Recall that each curved
segment connecting two adjacent circles in figure 3b represents the MEP of a
kink moving laterally by one atomic spacing. To facilitate comparison of kink
migration barriers at different values of dK, we show in figure 5b the MEP of
Proc. R. Soc. A (2006)
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breaking the 1st, 2nd, 5th, 8th and 10th bond, respectively. These curves in
figure 5b are essentially the folded and magnified profiles of the ‘cusps’ in figure 3b.
The energy reference for each curve is that of the initial state of breaking an
individual bond, so that all curves start from zero energy. Also shown in figure 5b
are the data points of the energies of replica configurations along each pathway. It
is seen that breaking each individual bond from the 1st to the 10th is
thermodynamically unfavourable in that the final state has a higher energy
than the initial state. Moreover, the kinetic barrier for a forward transition will
decrease, from 0.86 eV of breaking the first bond to 0.44 eV of breaking the 10th
bond. As the number of broken bonds, i.e. the separation between two kinks dK,
increases, the migration barrier will approach an asymptotic value corresponding
to the activation energy for the migration of an isolated kink, denoted byWK. This
value is given approximately by the barrier for breaking the 10th bond, 0.44 eV. In
addition, we compare the present dK-dependent kinetic barrier of breaking a bond
with the barrier height per bond for the two-dimensional pathway in §3b, in which
all bonds at the crack front break simultaneously. It is of interest to observe that
the kinetic barrier of 0.64 eV per bond from the two-dimensional calculation is
close to the average of the upper and lower limits from the three-dimensional
calculation.

We conclude this subsection by noting a useful analogy between the crack
front kinks and dislocation kinks, the latter having been extensively studied (e.g.
Lothe & Hirth 1959; Caillard & Martin 2003). For crystals with significant
secondary Peierls barrier, such as Si, the fact that the kink mechanism should
also play a central role in crack front mobility is understandable given the
structural similarity between the crack front, as the core of a crack tip, and the
core of a dislocation line. Indeed, it is widely recognized that in Si, dislocations
move by the nucleation and migration of kink pairs. Exploiting the analogy
between the crack front and the dislocation core in an explicit and operational
fashion, as suggested by our results, should be considered in future studies of
deformation physics of both types of defects.
(d ) Loading effect and lattice trapping range

In the literature, the Griffith load KIG is also regarded as the neutral load (e.g.
Sinclair 1975), because the initial and final states have the same energy in
advancing the crack by one atomic spacing. As the applied load increases beyond
KIG, the potential energy landscape of the system will be tilted, such that a
forward transition becomes favourable both thermodynamically and kinetically.
This loading effect can be clearly seen from the MEP of sequentially breaking
20 bonds at a higher load of KIZ0:70 MPa

ffiffiffiffi
m

p
, as shown in figure 6. For

comparison, the same MEP shown in figure 3b at the Griffith load KIGZ
0:646 MPa

ffiffiffiffi
m

p
is replotted in figure 6, but adjusted to the new energy scale. It is

seen from the MEP at KIZ0:70 MPa
ffiffiffiffi
m

p
that there exists a critical distance

between a pair of kinks, denoted by dcr
K ðKIÞ, beyond which further kink-pair

separation will cause the system energy to decrease, which is thermodynamically
favourable. Clearly, dcrK ðKIÞ is finite if and only if KIOKIG. At KIZ0:70 MPa

ffiffiffiffi
m

p
,

the kink pair with a separation of dcrK ðKIÞ corresponds to the state with one broken
bond on the front as shown in figure 6. In addition, it is also seen that the energy
barrier for kink migration (moving in the direction of separating the kink pair)
Proc. R. Soc. A (2006)
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decreases compared to the corresponding barrier height with the same dK, but at a
lower load of KIG.

To characterize KI-dependent energetics of kink-pair formation and migration,
two more critical loads, beyond the Griffith load KIG, can be considered. The first
one, denoted by K f

I , is related to the thermodynamic energy balance of kink
formation. At K f

I , the energy change associated with the formation of the
smallest possible kink pair, i.e. breaking the first bond beyond the straight front,
vanishes. For the present simulation setup, K f

I z0:79 MPa
ffiffiffiffi
m

p
. The MEP of

breaking the first bond at K f
I is shown in figure 7a. Evidently, the energy change

is zero between the initial and final states. But there is still an activation barrier
of about 0.43 eV at this load level.

The second critical load, denoted by Km
I , is the athermal load which is related

to the kinetics of kink-pair formation. That is, at Km
I , the activation barrier for

breaking the first bond at the straight crack front vanishes. More importantly,
our calculations of MEPs at different load levels have indicated that, compared
to the barrier heights of later breaking other bonds, the kinetic barrier of
breaking the first bond is the slowest decreasing one as KI increases. Hence,
above Km

I , the first kink-pair nucleation as well as subsequent kink migration
across the crack front can take place spontaneously without the aid of thermal
fluctuations. This is the scenario that leads to spontaneous cleavage fracture.

To determine Km
I , we increase the load incrementally above KIG. At each load

level, the corresponding MEP of breaking the first bond is obtained via the NEB
calculation. Figure 7a shows energy variations along MEPs at three typical
loads. Here, the symbols denote the calculated energies of replica configurations
along the pathway and the continuous curves are constructed via interpolations.
We find that when the load reaches KIz0:90 MPa

ffiffiffiffi
m

p
, it is no longer possible to

obtain a relaxed initial state geometrically similar to the configurations at the
lower loads; the system tends to relax to another local energy minimum
corresponding to a different deformation mode, amorphization by forming new
crack-tip ring structures. Since the focus of this work is to study the transition
Proc. R. Soc. A (2006)
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Figure 7. Energetics of breaking the first bond at a straight crack front: (a) MEP at three typical
loads of KI for the ð111Þ½1�10� crack; (b) the activation energy barriers DEact as a function of load KI

for two crack orientations: symbols represent calculated data points and solid lines are polynomial
extrapolations. The athermal loads of spontaneous fracture, which can be determined from the
intersections between the solid and dashed lines, are Km

I Z1:0 MPa
ffiffiffiffi
m

p
for the ð111Þ½1�10� crack and

Km
I Z0:88 MPa

ffiffiffiffi
m

p
for the ð111Þ½11�2� crack, respectively.
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pathway for cleavage fracture along the (111) plane, we leave the issue of
competition among different deformation modes to a future investigation.
Nevertheless, we can estimate Km

I by extrapolation from the activation energies
DEact obtained at the lower loads, see figure 7b where the circles are the
calculated data points and the solid line is the polynomial fitting curve. It is seen
that DEact for breaking the first bond shows a slight nonlinear dependence on KI.
The value of Km

I , obtained by extrapolating the curve to zero activation energy,
is about 1:0 MPa

ffiffiffiffi
m

p
. This athermal load is the upper limit of the lattice trapping

effect. Hence, the lattice trapping range given by the SW potential, defined
here as the ratio Km

I =KIG, is about 1.55. In particular, we note that since
Proc. R. Soc. A (2006)
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the three-dimensional pathway is more favourable kinetically than the
corresponding two-dimensional pathway at the same load level, the present
estimate of lattice trapping range should be a lower bound to the two-
dimensional estimate. While the result of lattice trapping range is dependent on
the interatomic interaction model, the calculations and analyses presented here
serve to demonstrate how three-dimensional load-mediated lattice trapping
barriers to brittle fracture can be accurately characterized atomistically.
4. Propagation anisotropy

Although the f111gh1�10i crack (propagating in the h11�2i direction) is the most
frequently studied crack orientation, fractography observations of cleavage
surface indicate that, instead, a {111} cleavage crack prefers to propagate in the
h110i direction (e.g. George & Michot 1993). The preference of propagation
direction within a certain cleavage plane, called propagation anisotropy, has been
explained by comparing orientation-dependent lattice trapping ranges of two-
dimensional crack configurations (Pérez & Gumbsch 2000a,b). Here, we provide
a more detailed explanation of propagation anisotropy in terms of the
orientation-dependent energetics of crack front kink-pair formation and
migration.

We first note that it is fundamentally difficult to rationalize propagation
anisotropy using only thermodynamic arguments. The Griffith criterion may
suggest that preferential cleavage plane should be the one with the lowest surface
energy gs. But, on the same cleavage plane, two cracks of different orientations
would experience the same resistance gs to crack propagation and thus have the
same critical energy release rate Gc as can be clearly seen from equation (3.1).
Indeed, there may exist a difference in the critical stress intensity factor KIG,
which arises from a variation of the effective compliance within respective x1Kx2
planes due to elastic anisotropy for different crack orientations. However, as we
now show, this difference is so small that KIG cannot be regarded as a robust
measure of propagation anisotropy.

On the other hand, consider a practical situation where the material contains
an assortment of flaws distributed in size and aspect ratio. It seems unlikely
that a special pre-crack orientation is selected every time to first trigger unstable
propagation, just due to the condition of the initial flaws. A more plausible
scenario is that with increasing macroscopic load, an ensemble of crack
orientations exceeds the Griffith limit at approximately the same time and
they all start to grow, aided by thermal activations. Since the load KI

(for simplicity, we only consider mode I load) is still less than the corresponding
Km

I , there will be a special orientation whose front grows the fastest due to
smaller kink-pair formation and migration energies. If the system is under load
control, KI will increase with crack length in a positive feedback, until this
particular crack front reaches the athermal threshold of Km

I first. At that point,
runaway dynamical fracture occurs. Also, this orientational competition may
occur not only at physically separate crack fronts, but also at different places in
one contiguous crack front, leading to morphological evolution that favours
faster growth of one orientation until dynamical fracture is triggered first in that
orientation. Therefore, we see that although the lattice trapping ranges could be
Proc. R. Soc. A (2006)
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quite narrow in brittle materials, it is still necessary to do a careful study,
because a physically important question of which orientation triggers dynamical
fracture first could depend on the precise value of Km

I .
To continue this line of reasoning, we next consider the ð111Þ½11�2� crack

extending in the close-packed ½�110� direction. The crack-tip atomic structure is
shown in figure 1c. Similar to §3a, we estimate the Griffith load using the analytic
LEFM Stroh solution. The effective compliance calculated for the new crack
orientation is H22Z2.71!10K11 PaK1. Substitution of H22 and the (111) surface
energy gs into equations (3.1) and (3.2) gives an estimate of the Griffith load
KIGZ0:654 MPa

ffiffiffiffi
m

p
. On the other hand, the value of KIG determined from

direct atomistic calculations is 0:643 MPa
ffiffiffiffi
m

p
. Evidently, the value of KIG for the

ð111Þ½11�2� crack is very close to that of 0:646 MPa
ffiffiffiffi
m

p
for the ð111Þ½1�10� crack,

which proves numerically that the Griffith criterion cannot be applied to explain
propagation anisotropy.

Although the difference in KIG for different crack orientations is small, the
difference in Km

I may be large. We begin by studying the energetics of crack front
kink-pair formation and migration for the ð111Þ½11�2� crack at its Griffith load
KIGZ0:643 MPa

ffiffiffiffi
m

p
. Figure 8a shows the MEP of sequentially breaking 20

bonds along the crack front. For comparison, the corresponding MEP for the
ð111Þ½1�10� crack at its Griffith load KIGZ0:646 MPa

ffiffiffiffi
m

p
is also shown in

figure 8a. Here, symbols represent the kink-pair formation energies, which are the
sums of kink-pair interaction energy and twice of the kink self-energy, as given
by equation (3.3), while the saddle points between symbols give the kink-pair
migration barriers. Comparing the two MEPs, we find significantly different
kink-pair formation energies, while the kink migration barriers are similar.
Specifically, for the ð111Þ½11�2� crack, the kink self-energy EK, estimated from the
asymptotic value of the lower envelope curve connecting the squares, has a much
lower value of about 0.22 eV. In contrast, for the ð111Þ½1�10� crack, the kink self-
energy is much higher, at about 0.8 eV.

As the applied loads increase by the same ratio beyond KIG, the activation
energy required to extend the ð111Þ½11�2� crack is consistently lower than that for
the ð111Þ½1�10� crack, as demonstrated selectively in figure 8b using two MEPs at
KIZ0:70 MPa

ffiffiffiffi
m

p
. To estimate the lattice trapping range for the ð111Þ½11�2�

crack, we also obtain the athermal load by extrapolation. As shown in figure 7b,
a value of Km

I Z0:88 MPa
ffiffiffiffi
m

p
is obtained, which then leads to Km

I =KIGZ1:37,
a narrower lattice trapping range for the ð111Þ½11�2� crack. We note that the two-
dimensional simulations by Pérez & Gumbsch (2000a,b) on the {110} cleavage
cracks also demonstrate orientation-dependent lattice trapping ranges. However,
the present three-dimensional study follows a different line of investigation.

The orientation-dependent kink-pair formation energy is closely related to the
bond densities along different directions within the (111) plane. The profile of the
kinked crack front for the ð111Þ½11�2� crack at KIGZ0:643 MPa

ffiffiffiffi
m

p
is shown in

figure 9, where the distribution of opening displacement across the cleavage plane
is plotted for the state with 10 broken bonds on the crack front. It is seen that
both the leading and trailing edges of the crack front have a zigzag profile, in
contrast to the atomically smooth crack front for the ð111Þ½1�10� crack as shown
in figure 4. The zigzag profile indicates that the second array of bonds
immediately adjacent to the crack front also have relatively large opening
displacements. This feature can be explained as follows. Assuming the LEFM
Proc. R. Soc. A (2006)
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solution is approximately correct near the crack front, the bond opening
displacement (in the x2 direction) should vary sensitively with the distance
(in the x1 direction) from the crack front. The close-packed arrangement of atoms
along the x1 direction for the ð111Þ½11�2� crack means a smaller distance of the
Proc. R. Soc. A (2006)
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second array of bonds from the crack front, and, consequently, larger equilibrium
opening displacements and a more zigzag profile. Moreover, we believe this is
consistent with the crack having a smaller kink formation energy in that one can
expect the energy cost of barrier crossing by the crack front kink to become
smaller if tensile opening displacements before and after the crossing are closer.
5. Discussions

(a ) Effect of interatomic potential

Wehave selectively repeated the calculations we have just presented using theEDIP
potential to study the influence of the interatomic potential on results. The Griffith
loads are first determined for two crack orientations. Atomistic calculations
give KIGZ0:58 MPa

ffiffiffiffi
m

p
for the ð111Þ½1�10� crack and KIGZ0:59 MPa

ffiffiffiffi
m

p
for the

ð111Þ½11�2� crack. Similar to the SW potential, a slight variation ofKIG between the
two crack orientations arises due to the difference in the effective compliance
within respective x1Kx2 planes. However, the SW and EDIP potentials predict
different Griffith loads, which is consistent with the fact that they give different
values of elastic constants and surface energy as listed in table 1.

Figure 10 shows the energy variations along the MEPs at respective Griffith
loads for the two crack orientations calculated using the EDIP potential.
Comparing to the SW results shown in figure 8a, we find that the ð111Þ½11�2�
crack orientation is also favoured kinetically. Despite the agreement in the trend,
there are some quantitative differences in the kink-pair formation and migration
energies. Specifically, relative to the SW potential, the EDIP potential gives a
lower kink formation energy, but a higher migration energy. Furthermore, our
calculations of MEPs at different load levels using the EDIP potential indicate
that the lattice trapping range is larger for both crack orientations compared to
the corresponding results obtained from the SW potential. This difference in
Proc. R. Soc. A (2006)



T. Zhu and others1758
lattice trapping range between the two potentials can be correlated with the
different cohesive responses of uniformly cleaving a perfect crystal as shown in
figure 2, keeping in mind that the actual crack-tip bond breaking occurs under a
non-uniform stress environment with a large stress gradient. Recall that figure 2
shows a significant difference in the slope on the backside of the cohesive response
for the two potentials. Previous analyses from a series of simplified interatomic
force laws indicated that a steep slope on the backside of the force law will lead to
a large lattice trapping range (Thomson et al. 1987). Our present calculations
show the same trend quantitatively. Finally, we note that a recent two-
dimensional study by Bernstein & Hess (2003) on Si shows that the SW potential
overestimates lattice trapping barriers compared to the results obtained from a
multiscale simulation, i.e. the tight-binding description of bonding near the crack
tip embedded in an empirical potential (EDIP) region. It is conceivable that a
calculation using a more accurate force field along the lines presented here will
give a more realistic estimate on the three-dimensional lattice trapping barriers.

(b ) Other competing transition pathways

In the present work, we focus on studying the lattice trapping barriers along a
specific three-dimensional transition pathway, breaking the crack front bonds
sequentially. Clearly, for a given K-field load, there exist other competing
pathways to extend the crack. Among a few possible scenarios that we have
considered, the pathway of sequential bond breaking is kinetically the most
favourable. We have demonstrated in §3b that simultaneous fracture of crack
front bonds requires a much higher activation energy. In this subsection, we
study another competing process. Given s broken bonds on the front, we compare
the energetics of breaking a bond on the advancing front versus breaking a bond
on the trailing front. The latter corresponds to the scheme of sequential bond
breaking we have studied before. Without loss of generality, we choose a starting
point as follows: the ð111Þ½11�2� crack under KIZ0:62 MPa

ffiffiffiffi
m

p
with sZ8 broken

bonds on the crack front; the EDIP potential is used in the calculation. Figure 11
shows the MEPs of the two competing processes of breaking the ninth bond on
the crack front along with the MEPs of breaking the previous eight bonds. It is
seen that both the saddle point and final state of the new scheme have higher
energies than the corresponding values associated with the scheme of sequential
bond breaking. Hence, bond breaking at the advancing front is thermodynami-
cally unfavourable, and there is also a larger kinetic barrier. Moreover, the study
of morphological stability of an initially straight crack front in a linear elastic
solid by Rice (1985) indicates that for a crack under a displacement-control
boundary condition, small perturbations from straightness should decay with
time. Assuming this long wavelength analysis is applicable to atomic-scale kinks,
an initially straight crack front should maintain straightness during quasi-static
extension, which agrees with our atomistic calculations.
6. Summary

We have presented previously a detailed account of an atomistic study to
quantify the energetics and atomic geometries of bond ruptures along the three-
dimensional crack fronts in Si. We find the directional anisotropy in cleavage
Proc. R. Soc. A (2006)
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crack propagation can be attributed to a difference in the kink-pair formation
energy for different crack orientations. Results from both the SW and EDIP
potentials show a consistent trend of orientation-dependent lattice trapping
barriers. We note that along the lines presented here, the kinetic process of
dislocation emission at the crack front, which involves bond rupture and
subsequent bond reformation by thermal activation (e.g. Zhu et al. 2004a), can
also be explored. A quantitative characterization of the two competing processes
of cleavage bond rupture and dislocation emission at a three-dimensional crack
front is essential to the multiscale modelling of brittle-to-ductile transition in Si;
the calculated atomistic energetics can serve as atomistic input for the coarse-
grained simulation to study the crack front dynamics at a longer time-scale (e.g.
Cai et al. 2000).
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